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ABSTRACT

Present time synchronization techniques used in the NASA Goddard
Space Flight Center (GSFC) Transportable Laser Rangin Network (TLRN)
will be discussed. The operational aspects of the Naval Research Labo-
ratory (NRL) developed Global Positioning System {GPS) receiver and
the Stanford Telecommunications, Inc. (STI) GPS receiver, both of which
are used in the GSFC-TLRN, will also be discussed. In addition, opera-
tional time data taken via GPS at TLRN sites located at Goldstone, Cali-
fornia ; Santiago, Chile ; Cerra Tollola, Chile ; Otay Mountain, Califor-
nia ; Cabo San Lucas, Mexico and Arequipa, Peru during 1983 and 1984 wil]
be presented.



Use of the Global Positioning System
for the
NASA Transportable Laser Ranging Network

Introduction

The NASA Goddard Spaceflight Center (GSFC) and the
Naval Research Laboratory (NRL) initially transferred time
by satellite in 1977 using the NRL Navigation Technology
Satellite (NTS) [1,2]. This system provided accuracies of
several hundred nanoseconds [3]. As an outgrowth of that
program a joint effort was started in 1979 to develop
Global Positioning System (GPS) timing receivers using
signals radiated by the GPS satellites. These receivers
were designed to provide precise time measurements between
the time standard of the U.S. Naval Observatory and clocks
at remote locations. NASA is currently using the GPS5 time
transfer receivers in the GSFC Transportable lLaser Ranging

Network (TLRN) in support of the GSFC Crustal Dynamics
Program.

252.
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Geophysical data suggest that the surface of the earth
is composed of rigid plates 50 to 150 kilometers thick.
These plates move slowly (1 to 10 centimeters per year) in
response to driving foreces resulting from motion in the
earth's interior.

In 1978 the Crustal Dynamics Project was launched to
study the movement of the earth's plates. One of the
techniques being used tv measure plate motion is Satellite
Laser Ranging (SLR). SLR uses the measurement of the time
of flight of very short laser pulses to a retroreflector on
a satellite [47.

Ground-based lasers transmit intense light pulses to
these retroreflectors and record the round-trip travel time
for the pulse to return. If the orbit of the satellite is
well-known, such ranging permits precise determination of
the location of the laser station on the Earth's surface.
When two stations range to the same satellite simultane-
ously, the distance between the stations can be accurately
determined.

The GSFC Transportable Laser Ranging Network which
supplies the SLR data, presently consists of eight Mobile
Laser Systems (MOBLAS, Fig. 1) and four highly Transport-
able Laser Ranging Systems (TLRS). These systems have been
deployed globally to measure regional deformation, plate
motion, plate deformation, and polar motion. TLRS-1 and
TLR5-2 have been using MNRL built GPS receivers since the
early part of 1984 and the middle of 1983 respectively.
Since the installation of a GP3 timing receiver, TLRS-1
(Fig. 2) has gathered data at the following sites:

1) Goldstone, California, USA; 2) Santiago, Chile; and 3)
Cerra Tollola, Chile. TLR3-~2 (Fig. 3) has obtained GPS time
transfer data from: 1) Otay Mountain, California, USA; and
2) Cabo San Lucas, Mexico. Operational GPS time transfer
data from these field sites as well as from a semi-
permanent laser station in Arequipa, Peru will be presented
in this paper.

The NAVSTAR Global Positioning System

NAVSTAR GPS is a tri-service Department of Defense
(DOD) program. The first GPS satellite flown was the
Navigation Technology Satellite (NTS-II) which was designed
and built by NRL personnel [5,6]. GPS provides the capa-
bility of very precise instantaneous navigation and
transfer of time from any point on the Earth. GPS comprises
three segments: The Space 3Segment, the Control Segment and
the User 'Segment. The phase III Space Segment will consist
of a constallation of 18 to 24 satellites, six to eight in
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each of three orbital planes (Fig. 4). The satellite orbits
are nearly Siroular at an altitude of about 20,000 km and
inclined 557 to the equator. The period is one half of a
sideral day, resulting in a constant ground track, but with
the satellite appearing 4 minutes earlier each day.

Each satellite transmits its own identification and
orbital information continuously. The transmissions are
spread spectrum signals, formed by adding the data to a
direct sequence code, which is then biphase modulated onto
a carrier.

The control segment consists of a master control
station (MCS) and monitor stations (MS) placed at various
lecoations around the world [7]. The current Phase I MCS is
located at Vandenberg Air Force Base with the support
monitor tracking stations at Alaska, Guam, Hawaii, and
Vandenberg, California (Fig. 5). The monitor stations
collect data from each satellite and transmit to the MCS.
The data is processed to determine the orbital
characteristics of each satellite and the trajectory
information is then uploaded to each satellite, once every
24 hours as the spacecraft passes over the MCS.

The user segment consists of a variety of platforms
containing GPS receivers, which track the satellite signals
and process the data to determine position and/or time.
Navigation is performed by simultaneous or sequential
reception of at least four satellites, and time transfer is
performed by reception of a single satellite. Coverage of
the Phase III constellation is such that at least four
satellites will always be in view from any point on the
earth's surface,

Time Transfer Method

To transfer time via a GPS satellite, pseudo-range
measurements are made consisting of the propagation delay
of the received signal biased by the time difference
between the satellite clock and the ground station
reference clock (see Fig. 6 and references [8] and [91).
Data from the navigation message contain the satellite
clock information and the satellite ephemeris, which allows
one to compute the satellite position and elock offset.
Since the position of the satellite and ground station are
known, the propagation delay can be computed, subtracted
from the pseudo-range and then corrected for the GPS time
offset to determine the results of ground station time
relative to GPS time. The navigation message also contains
coefficients which allow GPS time to be referenced to the
"U.8. Naval Observatory (USNO) time standard, therefore, the
final result of ground station time relative to USNO time
can be calculated in real time. The final results obtained
from a single frequency receiver will contain a small error



due to the atmospheric delay, which may be modeled and
corrected. If two ground station clocks are synchronized to
GPS time, the results can be subtracted to obtain the time
difference between the ground station elocks. This can be
done at any time, but the best results are obtained when
data is taken simultaneously by each ground .station from
the same satellite {(common view), since any error contri-
buted by the satellite is reduced when the data is sub-~
tracted.

GPS Time Transfer Receiver (TTR)

The GPS TTR [8] is a microcomputer based system which
operates at the single L-band frequency of 1575 MHz (Fig.
7). The receiver uses the C/A code only (1.023 MHz),
tracking this code to within 3% of a chip (30 ns). The
receiver has the capability to track satellites throughout
their doppler range from horizon to horizon, and can track
any GPS satellite by changing the receiver internal code.
The block diagram in Fig. 8 shows the GPS receiver
configuration. Operator interface with the receiver is
provided by a keyboard and CRT display. The time data 1s
stored on floppy disks and can also be outputted to an
external printer or computer via a serial data interface.
The input requirements to the receiver include the antenna
pesition in WGS-72 coordinates, 1 pulse per second from the
station time standard and 5 MHz from the station time
standard.

Method of Measurement

The NRL built GPS time transfer receivers are
currently being operated in MOBLAS 1 and 5, TLR3 1 and 2,
and a semi-permanent laser site in Arequipa, Peru. The
timing receiver interfaces with the laser system as shown
in Fig. 9. Figure 10 contains a block diagram of the TLRS3
timing subsystem. The TLRS systems require a minimum of 200
minutes of useable laser measurements at a given site
before relocation t90 a new installation. The one pulse per
second and 5 MHz input signals required by the receiver are
supplied by the station cesium beam clock. The receiver
operates in a fully automatic schedule mode, tracking each
GPS satellite once per day. The tracking schedule is
determined by the ovperator. Each satellite track is usually
scheduled to last ten minutes. Two minutes are required for
signal search and acquisition, and one minute for locking
and synchronizing to the satellite data. The time transfer
results of (Station - USNO) and (Station - GPS) are then
sent to the Precise Timing Section of Bendix Field
Engineering Corporation (BFEC) in Columbia, Maryland, USA
-for further processing.
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GPS Time Transfer Results

The first TLRS-1 site visited with a GP3S timing
receiver was Goldstone, California (GDS). Figure 11 shows
the time transfer results of the GDS station clock relative
to the United States Naval Observatory clock ensemble
(denoted by NOB in all of the data plots). The time
transfer in microseconds is plotted by days. The term
"oredicted" indicates that these results were obtained
directly from the spacecraft. Figure 12 contains the same
time transfer results, namely, (NOB-GD3), however these
values are calculated by differencing the (GD3-GPS) data
received using the NRL receiver and (NOB-GPS) data obtained
via a similar receiver at USNO. The plots of this common
view method of time transfer are labeled "observed™. Both
the predicted and observed plots have a statistical summary
included. This summary contains a time transfer %n micro-

. . 1 .
seconds, a frequencqqoffset term in parts in 10 -, an aging
term in parts in 10 per day, the root mean square {(RMS3)
fit in nanoseconds, the number of points used and the
number of points filtered for each satellite. The satel-
lites are identified by NAVSTAR numbers. There is also a
composite line which incorporates the data from all
satellites. The time transfer, frequency and aging terms
are all calculated for the epoch day shown above the
summary table. Because the TLRN sites all use cesium beam
clocks a first degree curve is fit to the data, therefore
there is no aging term. While the RM3S values of the
individual satellites are all within the TLRN system
requirements of 100 ns, the observed data appears to be
noisier then the predicted data. Generally, the common view
technique of time transfer yields more accurate results
than using the predicted USNO term from the space vehicle.
However, common view assumes that two stations track the
same GPS satellite at the same time, and this was not the
case at the GDS station. The tracking schedule used at GD3
differed from the USNO schedule by as much as 12 hours.
Therefore, the results shown in the observed plot are less
precise.

After the GDS site the TLRS~1 system was relocated to
Santiago, Chile {(denoted by AGO in the data plots). Figures
13 and 14 show the predicted and observed time transfer
results of AGO relative to USNO, (NOB-AGO), for the entire
period of time the station was in operation. Several dis-
continuities are obvious on these plots. The first dis-
continuity, occurring on day 78, was due to a discrete jump
in the station cesium of approximately 10 microseconds. The
second obvious discontinuity is the result of a new station
cesium clock being installed. The original cesium failed on
day 93 and the new cesium began operation on day 98. Two
other less obvious discontinuities can be found on the
predicted plot but do not show up in the observed data.
These jumps, occurring on days B84 and 105, are the results
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of accumulated erroar in the predicted USNO term. The USHOD
prediction is btransmitted by each GPS satellite, as part of
the navigation message, once every 12.5 minutes. The HRL
receiver does not update the USHNO prediction for each
satellite track due to the length of time this would
require. Hather, a special track is used by the receiver to
update the entire navigation message, including the USNO
term. This track, scheduled once a day and lasting 20
minutes, can be taken from a GPS satellite. If the
predicted USNO term is not updated daily, the error will
grow rapidly. Errors on the order of several hundred
nanoseconds have been observed when the USNO prediction is
a few days old. This error does not exist when the common
view technique is used between a remote station and USHNO.
The observed plot of (NOB-AGO), (Fig. 14), therefore
contains no discontinuities on days 84 and 105.

The Santiago station data has been subdivided into its
three distinct phases and the predicted and observed data
for each phase i1s shown plotted in Figs. 15 through 20. In
each of these plots there is an obvious bias in the data
from one satellite to another. This problem results when
the coordinates of the receiver's antenna are inaccurate.
The best time transfer results are obtained when the
position of the antenna is known to within 3 meters. The
observed plots reveal that these results are consistently
superior to the predicted method. However, it should be
noted that the predicted results are within the require-
ments of the TLRN system.

From Santiago the TLR3-1 system was moved to Cerra
Tollola, Chile (TOL). The entire data set, both predicted
and observed, can be found in Figs. 21 and 22. These graphs
indicate that there was an antenna coordinate error upon
system installation. On day 145 new coordinates were
determined and input to the GPS receiver. The predicted and
observed data after this coordinate change have been
plotted and are shown in Fig. 23 and 24. Again, both the
predicted and observed results are within TLRN system
requirements, with the observed data having a slightly
lower RMS.

In the later part of 1983 the TLR3-2 systems was
deployed with a GPS receiver at Otay Mountain, Californis
(OTY). TLRS-2 remained at this location for over 100 days
and gathered much data (Figs. 25 and 26). All discontin-
uities on these graphs are the result of phase adjustments
to the station cesium clock. Station personnel were
required to keep the TLRS-~-2 clock synchronized with USNO
time to within a few microseconds. Figures 27 and 28 show a

-representative sample of predicted and observed data from

the Mt: Otay site. This sample covers the period from day
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271 through day 284 in 1983. Again a lower RMS can be seen
in the observed data, with the predicted data fulfilling
system requirements.

The next site TLRS~2 visited was Cabo San Lucas,
Mexico (CSL). The predicted and observed plots are shown in
Figs. 29 and 30 respectively. Only NAVSTAR 4 appears in the
statistical summary of the observed plot because the
program that generates these plots requires five tracks of
a particular satellite in order to calculate the summary
information. The satellite tracking schedule used at CSL
differed somewhat from that used at USNO, therefore the
number of common view points on the observed plot is lower
than the total number of points on the predicted plot.

The final laser site to be discussed is a semi-
permanent station in Arequipa, Peru (ARP) which supports
the NASA GSFC Crustal Dynamics Program. A GPS receiver was
installed at this location in the first quarter of 1984
(Fig. 3%1). The predicted and observed graphs are shown in
Figs. 32 and 33. The discontinuities on the predicted plot
‘occurring on days 107 and 118 are due to accumulated error
in the predicted USNO term due to lack of update. These
discontinuites, therefore, do not appear on the observed
plot. Other discontinuities are the results of phase
adjustments to the station cesium clock. Figures 34 and 35
contain the predicted and observed graphs for the period
between days 125 and 167. Again, because of the difference
in satellite tracking schedules between ARP and USNO, an
ideal common view situation does not exist. Therefore, the
predicted and observed results show little difference.

Future TLRN Systems

NRL built GPS time transfer receivers were recently
installed in MOBLAS-1 deployed at Huahine, French Polynesia
and MOBLAS-5 at Yarragadie, Australia. GPS time transfer
data from these stations was not available at this writing.

The TLRS 3 and Y4 systems are currently under
development and testing at the NASA Goddard Space Flight
Center. These TLRS systems will be using GPS timing
receivers manufactured by Stanford Telecommunications, Inec.
(STL). The STI receivers have been procured and are
currently being tested at GSFC. Experimental data obtained
under laboratory conditions at the GSFC laser laboratory
using the STI receivers is shown in Fig. 36. The receivers
were operated using an internal rubidium oscillator
included in the STI receivers as an option. Therefore, a
second degree curve has been fit to this data which results
in an aging term being calculated and included in the
summaries of Fig. 36. The STI receiver outputs the station
time difference relative to either USNO or GP3, but not
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both simultaneously. In these experiments the receivers
were operated with the time difference relative to USNO,
therefore, only the predicted plct can be shown.

Conclusion

The results of the operational data, gathered by the
NRL builft GPS time transfer receivers at field sites,
indicate that the overall accuracy of the synchronization
via the Global Positioning System is consistently better
than 100 nanoseconds,; which meets the synchronization
requirement of the NASA laser ranging network. The results
of the experimental data gathered by the 3TI timing
receivers under laboratory conditions indicate that these
receivers will also meet the TLRN system synchronization
requirements. Field tests on the STI receivers are
scheduled for the near future.
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Fig. 11 MAVSTAR GPS5 Time Transfer
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Fig, 12 NAVSTAR GPS Time Transfer
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MAVBTAR GPS TIME TRAMSFER
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A FIBRE OPTIC TIME AND FREQUENCY DISTRIBUTION SYSTEM

B, Kirchner, H. Ressler
Institut fiir Nachrichtentechnik
und Wellenausbreitung
Technische Universitdt Graz
Inffeldgasse 12 A-8010 Graz

Telephone (0) 316 7061 ext. 7441
Telex 31221

ABSTRACT

A fibre optic time and frequency transfer system is described
which is used at the Observatory Lustbilhel Graz for the distribu-
tion of one pulse per second and a 10 MHz reference frequency. In
developing this system special emphasis was laid on stable distribu-
tion o§ frequency and timing sighals (good short and long term sta-
Bility).
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A FIBRE OPTIC TIME AND FREQUENCY DISTRIBUTION SYSTEM

IRTRODUCTION

For many applications it is necessarv to distribute standard
frequencies and/or timing signals inside a building or between
buildings. In such applications problems mayv arise due to
ground loops and neise caused by electro-magnetic interference.
Fibre optic transmissions by-pass all these problems. At the
time-~keeping station of the Lustbiihel Observatory Graz, Aus-
tria, such a system was developed.

The system should meet the following requirements:

- Stable distribution of frequency and timing signals (good
short- and long-term stability)

- Buitable for distances up to several hundred metres (adapt-
able to greater distances if necessary)

~ Built as modular system

~ Compatible with existing devices (TTL compatible signal
levels, 50 ohms termination)

~ Built of components available off the shelf

-~ High reliahility

- Low price

The performance of the system should be comparable to commer-
cially available devices in conventional technique as widely
used in time~keeping laboratories.

BLOCK DIAGRAM

Pig. 1 shows the block diagrams of the frequency and the time
distribution link. Although in principle it is possible to dis-
tribute both kinds of signals by the same link it is favourable
to use two different links ({(each best suited for one of the
tasks) because of the possible different duty cycles of the
timing signals.

The following functional blocks are common to both systems:

- Input circuits with adjustable trigger levels

- Optic transmitter with adjustable driving current and optic
receliver

-~ Fibre optic cable and connectors

- AC~coupled broadband amplifier with adijustable gain

~ Pulse shaping circuits and line drivers

The time distribution link contains additional circuitry in the
transmitter and receiver in order to be able to distribute sig-
nals of different duty cycles without changes of the throughput
delay and to produce an output pulse of equal length irrespec-
tive ¢f the inpui signal. In order to accommodate the link to
different distances and to compensate for variations in the
optic components the driving current of the optic transmitter
and the gain of the amplifier in the receiver can be adjusted.

FIBRE OPTIC SYSTEM COMPONENTS

The requirements given in the introduction led to the following
choice:

- Wave length: 820 nm
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-  Transmitters: LED with a rise time of about 10 ns and an op-
tic output power between 5 and 25 uW at 820 nm

« Receiver: PIN-photodiode with integrated low noise transim-
pedance preamplifier and an output rise time of about 14 ans
Cables:; Multimode glass fibre cables (stepped index and
partially graded index cables with core diameters of 200 and
100 um, attenuation of 5 to 10 dB/km and a dispersion {pulse
spreading) of about 18 ns/km

-~  Connsctors: Pactory and user installed connectors with typi- .
cal insertion losses of 1.5 dB.

An important aspect for the choice of the components was the
compatibility of the products of different manufacturers.

CIRCUIT DESIGH

Because of the rise times of the optic components (more than

16 ng) and in order to be compatible with widely used equipment
TTL technigque is used. To achieve the required low jitter
values a carefully design of the print circuit boards was ne-
cessary. Besides usual filtering of the supply voltages the
supply for critical components is filtered individually and the
prints are designed like RF-prints (one side massive ground) to
get shorit connections to ground (see Fig. 2). For the negative
supply voltages needed for the operational amplifiers and com-
parators voltage inverters are used so that only positive sup-
ply voltages (5 V and 13 V) are needed. The input impedance is
50 chms and the output signals are provided by fast line dri-
vers delivering TTL levels into 50 ohms terminations with rise
times of about 5 ns.

MAINFRAME

In order to achieve the greatest possible flexibility the de-
vice is of modular construction. The mainframe which is rack
mountable {standard 19 inch rack) or for desk-top use contains
the power supply {(line voltage and/or 24 V DC with automatic
switch-over in case of a power failure} and has space for 11
plug~ins. All available plug-ins (fibre optic transmitter and
receiver for frequency and timing signals, distribution ampli-
fiers and frequency dividers}) fit in any slot of the mainframe.
At the front panel signals are available which indicate if a
slot is occupied and if a signal is supplied to a plug—~in
(front and rear panel design can be seen from Fig. 3}.

PERFORMANCE

Fig. 4 shows the relation between signal jitter (standard de-
viation ¢f 100 measurements of the output signal referred to
the input gignal), LED driving current and the length of the
fibre optic link. The measurement points are for cable lengths
of 10 and 100 m and driving currents of 20 and 40 mA. With the
- presently used optic transmitters a jitter of less than 50 ps
can be achieved for distances up to several hundred metres., It
is easily possible to increase the distance by the use of high
efficiency fibre optic transmitters. Temperature induced
changes of the throughput delay of the optic transmitter and
receiver are below 30 and 50 ps/°C, respectively. Temperature
induced changes of the cable delay depend on the design of the
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cable used (about 5 to 17 ps/°C for a cable of 100 m length).
Measurements of the signal delavs on a 100 m link carried ocut
in an air-conditioned room over a period of about one month
showed no systematic changes. For several month the link is
used to transmit time and frequency from the time~keeping sta-
tion to the laser station of the Observatory Lustbiihel and
works without any problems (see the report of G. Kirchner, this
issue} .
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RECENT IMPROVEMENTS IN DATA QUALITY
FROM MOBILE LASER SATELLITE TRACKING STATIONS

D.R. Edge, J.M. Heinick
Bendix Field Engineering Corporation
Data Services Group, Greenbelt, MD 20771

Telephone (301) ub4 7000
Telex 197700

ABSTRACT

Since 1981 NASA's Crustal Dynamics Project has been upgrading their
mobile satellite laser tracking systems (MOBLAS) to improve performance.
The major hardware modifications include the installation of a short pul-
se high energy Quantel laser, operating at 5 hertz, with a supporting time
interval unit (TIU) and a quad integrator receive energy measurement device.
Calibration stability and precision as well as satellite data precision have
been improved by these changes based on recent results from MOBLAS stations
Tocated in the U.S and in Australia. Full deployment of these stations will
significantly improve the accuracy of the globa) laser data set which will
lead to the more accurate determination of geophysical parameters.



Since 1981 NASA's Crustal Dynamics Project has been upgrading
their mobile sateilite laser tracking systems (MOBLAS) to

improve performance. The major hardware modifications include

the installation of a short pulse high energy Quantel laser,
operating at 5 hertz, with a supporting time interval unit

(Tiy) and a quad integrator receive energy measurement device.
Calibration stability and precision as well as satellite data
precision have been improved by these changes based on recent
results from MOBLAS stations located in the U.S. and in Australia.
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i
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Full deployment of these stations will significantly improve
the accuracy of the global laser data set which will lead to
the more accurate determination of geophysical parameters.
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Since 1981 NASA's Crustal Dynamics Project has been upgrading their
mobile laser satellite tracking systems, usually referred to as
MOBLAS stations. The major hardware modifications, shown to the
right in Figure 1, include a new laser, time interval unit, and
receive energy measurement unit. General Photonics lasers, with
a pulse width of about 6 nanoseconds, are belng replaced by high
energy, short pulse, Quantel lasers which have a pulse width of
only 2 tenths of a nanosecond. At the same time Hewlett-Packard
53704 Time Interval Units are replacing the HP5360's. The data
from the HP5360's have a granularity of 100 picoseconds, or 1.5
cm in range, where as the HP5370's have a resolution of 20 pico-
seconds. Nonlinear Relative Enerpy Measurement modules measuring
receive energy are being replaced with quad integrators which
have a more linear scale. Also, the upgraded stations are track-
ing at five pps, occasionally resulting in LAGEQOS passes having
over ten thousand observations.

By the end of this year all but 2 of the current MOBLAS stations
will have been upgraded, as shown in Figure 2. MOBLAS-1 is
currently being scheduled for upgrade, while MOBLAS 2 will stop
tracking and be dismantled. WMOBLAS 3 is undergoing a major
upgrade involving the replacement of the on-site computer in
addition to the other modifications and should be back up
sometime this year, The upgrades are complete on MOBLAS
stations &, 5 and 7; the upgrade with the installation of

an HP5370 time interval unit later this vear.

Installation of short pulse lasers greatly improved the quality
of the data. In general, the calibration precision has improved
by a factor of five, precalibration to postcalibration shifts
have been dramatically reduced from a few tenths of nanoseconds
to a few hundredths of nanoseconds, and RMS values for LAGEOS
passes dropped from a range of 10 to 16 cm to the 2 to &4 cm range.
This improvement in LAGEQS data can be seen in data [rom MOBLAS 4
in the United States and from MOBLAS 5 in Australia. TFipgures 3
and 4 list several LAGECS passes taken before, and then after,
the upgrades. The RMS values are plotted to the right, using

the letter 'C' for combined pre- and post- calibration, and

the letter 'S' for LAGEOS data. The vertical, dotted lines

are at 2 centimeter intervals. At MOBLAS 4 before the upgrades,
calibration RMS values were typlcally about 6 cm, and LAGECS

data were about 12 cm RMS. After the upgrades, calibration

RMS wvalues were down arcund 2.25 em, while LAGEOS data had

RMS values of about 4 cm. The improvement in the data from
MOBLAS 5 was even more dramatic. Calibration RMS values went
from about 5.5 e¢m down to 1 cm, and LAGEQS RMS values which

ware around 14 cm £ell down to the 2 cm level.
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With this larpge improvement in data quality it is now possible to
see gystematic affects at the subcentimeter level. The systematic
e¢ffect from the upgraded MOBLAS stations which has received the
wost attention is the dependence of the range measurement on receive
energy. The quad integrator allows accurate monitoring and modeling
of the raceive energy dependent bias and jitter of the receivers
which have not yet been modified. Flgure 5 is a plot of satellite
data residuals versus the receive energy measurement and a plot of
the receive energy distribution. The means of the range residuals
ipy each column of the plot are plotted vertically, in centimeters,
using ‘X's' with one sigma error bars. The number of data points
represented by each column is read downward at the bottom of the
chart. The relative receive energy increases to the vright. This
data is from a LAGEOS pass which has an overall RMS of 2.8 centi-
meters, taken August 17 of this year by MOBLAS 7. As the receive
energy appreaches the threshold of the receive system, to the left
in the plot, the delay of the system usually increases, and range
measurements taken near threshold would appear to be long by a few
centimeters. Also, system jitter is greater in this area, so pass
BMS values increase as more data is taken near threshold. At present
a large fraction of the LAGEQOS data being taken by the upgraded
MORLAS svstems have receive energies near the thresheold limit, so
it dis important to moniter, model, and, if possible, correct the
data based oun receive energy. Upgraded MOBLAS systems now take
2000 calibration observations per pass, covering the entire receive
energy range. Data has been corrected, on an experimental basis,
by fitting a curve through the calibration data and then applying
that curve to the satellite data, removing the bias. RMS values
generally improve, some by as much as 35%, depending on the mag-~
nitude of the original blages and the distribution of data near
threshold. TFigure & is an example, a 2.7 cm LAGEOS pass taken

May 13, 1984 by MOBLAS 7, was corrected based on receive energies
veducing the RMS to 2.3 cm and eliminating shot by shot range
biases of up to several centimeters.

To sum up, a new level of data qualiry has been achieved by the
upgraded MOBLAS systems. LAGEOS passes now have RMS values of

2 to 4 cm, and pre— te post- calibration shifts have been greatly
reduced. Data quality should jmprove again in the near future

as new types of receivers involving microchannel plates and new
discriminators are to be tested this year, and new software is
being developed to handle systematic effects left in the data.
LAGEOS pass RMS values should approach ! centimeter in the near
future.
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